How to derive deterministic approximations from the stochastic model of enzyme kinetics?

João Luiz de Oliveira Madeira
SAMBa Cohort 8
Joint work with Fernando Antonelli (Unifesp - Brazil)

Engineering and Physical Sciences
Research Council

Topics

Aims	The Biology of Enzymatic Reactions	Constructing the Model(s)
- To introduce the idea of "convergence" of stochartic interacting partide spatems to ODE - Apply this concept to a model with multiple time scales which is crucial to mathematical blology - Rigorous math is FUN. - AND useflull	COHPLEXI	How so conitruet a model which explains and reproduces the observed behiviour?

Scaling Limits of the Stochastic Model

Conclusion

Aims

- To introduce the idea of "convergence" of stochastic interacting particle systems to ODEs

- Rigorous math is FUN...
- AND useful!

The Biology of Enzymatic Reactions

The Biology of Enzymatic Reactions

- Enzymes are proteins that accelerate the conversion of other molecules, but they themselves are not changed by the reaction \rightarrow basic biological catalysts

- Enzymatic reactions are ubiquitous in biological systems
- Basic model in biochemical networks

The Michaelis-Menten Kinetics

- Reaction: $S \rightarrow P$
- Law of Mass Action:

$$
V=k[S]
$$

- The kinetics of enzymatic reactions does not follow the law of mass action
- The Michaelis-Menten Kinetics:

$$
V([S])=\frac{V_{\max } \cdot[S]}{K_{M}+[S]}
$$

Constructing the Model(s)

$\lceil--------------------------------7$

Modelling

Quasi-Steady State
Deterministic
Approximation
(QSSA)

Stochastic
Interacting Particle
System

Quasi-Steady State Deterministic Approximation

- Substrate $(s(t))$, product $(p(t))$, enzyme $(e(t))$ and complex $(c(t))$ are \mathcal{C}^{1} functions from $[0, \infty)$ to \mathbb{R}_{+}

$$
\begin{aligned}
& e(t)=e(0)-c(t) \\
& \frac{d c}{d t}(t)=k_{1} s(t) e(t)-\left(k_{2}+k_{3}\right) c(t) \approx 0 \\
& \frac{d p}{d t}(t)=k_{3} c(t) \Rightarrow \frac{d p}{d t}(t)=\frac{k_{1} e(0) s(t)}{\left(k_{2}+k_{3}\right)+s(t)} \equiv \frac{V_{\max } s(t)}{K_{M}+s(t)} \\
& \frac{d s}{d t}(t)=-k_{1} s(t) e(t)+k_{2} c(t)=-\frac{k_{1} e(0) s(t)}{\left(k_{2}+k_{3}\right)+s(t)}
\end{aligned}
$$

The QSSA Approach

Advantages

1. Good fit to the data (when a large number of substrate molecules is considered)
2. Simple, but a meaningful, explanation
3. It is difficult to make the argument rigorous

$$
\begin{aligned}
\frac{d c}{d t}(t) & =k_{1} s(t) e(t)-\left(k_{2}+k_{3}\right) c(t) \approx 0 \\
e(t) & =e(0)-c(t)
\end{aligned}
$$

2. It does not fit the data well for low number of molecules

Stochastic Interacting Particle System

- We model our system as a continuous-time Markov chain
- Let $N \in \mathbb{N}$ be a scaling parameter
- $\left(X^{N}(t)\right)_{t \geq 0}=\left(X_{1}^{N}(t), X_{2}^{N}(t), X_{3}^{N}(t), X_{4}^{N}(t)\right)_{t \geq 0}$ which is a jump process in $\left(\mathbb{N}_{0}\right)^{4}$:
- $X_{1}^{N}(0)=N s_{0}$ and $X_{2}^{N}(0)=N p_{0}$
- For all $t \geq 0, X_{3}^{N}(t)+X_{4}^{N}(t) \equiv m>0$
- $\widehat{k}_{2}=N k_{2}$ and $\widehat{k}_{3}=N k_{3}$

Stochastic Interacting Particle System

- Given a state $\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right) \in\left(\mathbb{N}_{0}\right)^{4}$:

$$
\begin{aligned}
& \left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right) \rightarrow\left(\xi_{1}-1, \xi_{2}, \xi_{3}-1, \xi_{4}+1\right) \text { with rate } k_{1} \xi_{1} \xi_{3} \\
& \left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right) \rightarrow\left(\xi_{1}+1, \xi_{2}, \xi_{3}+1, \xi_{4}-1\right) \text { with rate } \mathrm{N} k_{2} \xi_{4} \\
& \left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right) \rightarrow\left(\xi_{1}, \xi_{2}+1, \xi_{3}+1, \xi_{4}-1\right) \text { with rate } \mathrm{N} k_{3} \xi_{4}
\end{aligned}
$$

The Stochastic Interacting Particle System Approach

1. Good fit to the data
2. The description of the model is simple and precise, and it does not require any approximation

Scaling Limits of the Stochastic Model

The Scaling Limit

- Let $N \in \mathbb{N}$ be a scaling parameter
- $\left(X^{N}(t)\right)_{t \geq 0}=\left(X_{1}^{N}(t), X_{2}^{N}(t), X_{3}^{N}(t), X_{4}^{N}(t)\right)_{t \geq 0}$ which is a jump process in $\left(\mathbb{N}_{0}\right)^{4}$:
- $X_{1}^{N}(0)=N s_{0}$ and $X_{2}^{N}(0)=N p_{0}$
- For all $t \geq 0, X_{3}^{N}(t)+X_{4}^{N}(t) \equiv m>0$
- $\widehat{k}_{2}=N k_{2}$ and $\widehat{k}_{3}=N k_{3}$
$x_{1}^{N}(t) \equiv \frac{X_{1}^{N}(t)}{N}$ and $x_{2}^{N}(t) \equiv \frac{X_{2}^{N}(t)}{N}$

$$
f\left(X^{N}(t)\right) \equiv\left(x^{N}(t)\right)=\left(x_{1}^{N}(t), x_{2}^{N}(t)\right)
$$

The Scaling Limit

- Given a state $\left(\zeta_{1}, \zeta_{2}, \xi_{3}, \xi_{4}\right)=\left(\frac{\xi_{1}}{N}, \frac{\xi_{2}}{N}, \xi_{3}, \xi_{4}\right) \in\left(\mathbb{R}_{+}\right)^{4}$:

$$
\begin{aligned}
& \left(\zeta_{1}, \zeta_{2}, \xi_{3}, \xi_{4}\right) \rightarrow\left(\zeta_{1}-\frac{1}{N}, \zeta_{2}, \xi_{3}-1, \xi_{4}+1\right) \text { with rate } N k_{1} \zeta_{1} \xi_{3} \\
& \left(\zeta_{1}, \zeta_{2}, \xi_{3}, \xi_{4}\right) \rightarrow\left(\zeta_{1}+\frac{1}{N}, \zeta_{2}, \xi_{3}+1, \xi_{4}-1\right) \text { with rate } N k_{2} \xi_{4} \\
& \left(\zeta_{1}, \zeta_{2}, \xi_{3}, \xi_{4}\right) \rightarrow\left(\zeta_{1}, \zeta_{2}+\frac{1}{N}, \xi_{3}+1, \xi_{4}-1\right) \text { with rate } \mathbf{N} k_{3} \xi_{4}
\end{aligned}
$$

"Empirical" Evidence of Convergence

「 How to define convergence?

Weak Convergence of Probability Measures

- Let (E, d) be a complete and separable metric space
- Let $\left(\mu_{N}\right)_{N \in \mathbb{N}}$ be a sequence of Borel probability measures on E
- Consider a sequence of random variables $\left(X_{N}\right)_{N \in \mathbb{N}}$, each of them taking values on E, such that the law of X_{N} is given by μ_{N}
- Consider a random variable X, also taking values on E, with associated law μ
- Definition: We say $\left(X_{N}\right)_{N \in \mathbb{N}}$ converges weakly to X if for any bounded and continuous function $f: E \rightarrow \mathbb{R}:$

$$
\lim _{n \rightarrow \infty} \mathbb{E}_{\mu_{N}}\left[f\left(X_{N}\right)\right]=\mathbb{E}_{\mu}[f(X)]
$$

Weak Convergence in the Space of Càdlàg Functions

- Fix $T>0$
- For each $\mathrm{N} \in \mathbb{N}$, consider the random variable $x_{N}=\left(x_{N}(t)\right)_{0 \leq t \leq T}=\left(\frac{X_{1}^{N}(t)}{N}, \frac{X_{2}^{N}(t)}{N}\right)_{0 \leq t \leq T}$
- Our limiting "random" variable is the unique solution to the ODE $x=(s(t), p(t))_{0 \leq t \leq T}$
- We consider E as the space of càdlàg functions from $[0, T]$ to $\mathbb{R}^{2}: \mathcal{D}\left([0, T], \mathbb{R}^{2}\right)$
- We say a function is càdlàg if it is right-continuous with left limits

Weak Convergence in the Space of Càdlàg Functions

- We can define a topology in $\mathcal{D}\left([0, T], \mathbb{R}^{2}\right)$ which is called the Skorokhod topology
- The usual strategy to prove convergence is:

1. To show that any subsequence of $\left(\mu_{N}\right)_{N \in \mathbb{N}}$ has a weakly convergent subsequence
2. To prove that every subsequential limit has the same law (or is the same càdlàg function)

- The study of this approach is beyond the scope of this talk
- To prove that $\left(f\left(X^{N}(t)\right)\right)_{0 \leq t \leq T}=\left(\frac{X_{1}^{N}(t)}{N}, \frac{X_{2}^{N}(t)}{N}\right)_{0 \leq t \leq T} \Rightarrow(x(t))_{0 \leq t \leq T}=(s(t), p(t))_{0 \leq t \leq T}$, it is enough to prove that, for $\forall \epsilon>0$:

$$
\lim _{N \rightarrow \infty} \mathbb{P}\left[\left\{\sup _{0 \leq t \leq T} \mid\left\|x_{N}(t)-x(t)\right\|_{\infty}>\epsilon\right\}\right]=0
$$

Computing the "action" of the Generator on the
 Computing the Slow Variables

- Given a state $\left(\zeta_{1}, \zeta_{2}, \xi_{3}, \xi_{4}\right)=\left(\frac{\xi_{1}}{N}, \frac{\xi_{2}}{N}, \xi_{3}, \xi_{4}\right) \in\left(\mathbb{R}_{+}\right)^{4}$, we compute the impact of the dynamics on f :

Transition	Rate	Difference
$\left(\zeta_{1}, \zeta_{2}, \zeta_{3}, \xi_{4}\right) \rightarrow\left(\zeta_{1}-\frac{1}{N}, \zeta_{2}, \xi_{3}-1, \xi_{4}+1\right)$	$\mathrm{N} k_{1} \zeta_{1} \xi_{3}$	$\left(-\frac{1}{N}, 0\right)$
$\left(\zeta_{1}, \zeta_{2}, \xi_{3}, \xi_{4}\right) \rightarrow\left(\zeta_{1}+\frac{1}{N}, \zeta_{2}, \xi_{3}+1, \xi_{4}-1\right)$	$\mathrm{N} k_{2} \xi_{4}$	$\left(+\frac{1}{N}, 0\right)$
$\left(\zeta_{1}, \zeta_{2}, \zeta_{3}, \xi_{4}\right) \rightarrow\left(\zeta_{1}, \zeta_{2}+\frac{1}{N}, \xi_{3}+1, \xi_{4}-1\right)$	$\mathrm{N} k_{3} \xi_{4}$	$\left(0,+\frac{1}{N}\right)$

$$
\text { Drift Vector: } \gamma_{f}\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right)=\left(-k_{1} \zeta_{1} \xi_{3}+k_{2} \xi_{4}, k_{3} \xi_{4}\right)
$$

\square ,

$$
\square
$$

.

$$
\begin{array}{|lll|}
\hline\left(\zeta_{1}, \zeta_{2}, \zeta_{3}, \xi_{4}\right) \rightarrow\left(\zeta_{1}-\frac{1}{N}, \zeta_{2}, \xi_{3}-1, \xi_{4}+1\right) & \mathrm{N} \boldsymbol{k}_{1} \zeta_{1} \xi_{3} & \left(-\frac{1}{N}, 0\right) \\
\hline\left(\zeta_{1}, \zeta_{2}, \zeta_{3}, \xi_{4}\right) \rightarrow\left(\zeta_{1}+\frac{1}{N}, \zeta_{2}, \xi_{3}+1, \xi_{4}-1\right) & \mathrm{N} k_{2} \xi_{4} & \left(+\frac{1}{N}, 0\right) \\
\hline\left(\zeta_{1}, \zeta_{2}, \zeta_{3}, \xi_{4}\right) \rightarrow\left(\zeta_{1}, \zeta_{2}+\frac{1}{N}, \xi_{3}+1, \xi_{4}-1\right) & \mathrm{N} k_{3} \xi_{4} & \left(0,+\frac{1}{N}\right) \\
\hline
\end{array}
$$

The Martingale Problem

- We can describe the dynamics of the process $\left(f\left(X^{N}(t)\right)\right)_{0 \leq t \leq T}=\left(\frac{X_{1}^{N}(t)}{N}, \frac{X_{2}^{N}(t)}{N}\right)_{0 \leq t \leq T}$ by:

$$
f\left(X^{N}(t)\right)=f\left(X^{N}(0)\right)+M^{N}(t)+\int_{0}^{t} \gamma_{f}\left(X^{N}(\tau)\right) d \tau \longrightarrow \text { Stochastic Process }
$$

- The process $\left(M_{N}(t)\right)_{t \geq 0}$ indicates the fluctuations of the system, and it is a martingale

(Very) Brief Review of Martingales - I

- Consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$
- A filtration $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ of \mathcal{F} can be thought as a family of σ algebras indexed by time such that $\mathrm{s} \leq t \Rightarrow \mathcal{F}_{s} \subseteq \mathcal{F}_{t}$
- For a more practical point of view, we can think about \mathcal{F}_{t} as the σ-algebra generated by the events that happened until time t
- A Martingale $(M(t))_{t \geq 0}$ is a process such that:
$\checkmark M(t)$ is \mathcal{F}_{t}-measurable and $\mathbb{E}[|M(t)|]<\infty, \forall t \geq 0$
$\checkmark \mathbb{E}\left[M(t) \mid \mathcal{F}_{s}\right]=M(s), \forall 0 \leq s \leq t$
- Intuition: the amount of money a player wins in a fair game, Brownian motion

(Very) Brief Review of Martingales - II

- There are really nice estimates regarding martingales
- A particular case of the optional stopping theorem says that:

$$
\mathbb{E}[M(t)]=\mathbb{E}[M(0)], \forall t \geq 0
$$

- For example, Doob's L2 Inequality shows that:

$$
\mathbb{E}\left[\sup _{0 \leq t \leq T}\left\|\mid M^{N}(t)\right\|_{2}\right] \lesssim \mathbb{E}\left[\left|\left|M^{N}(t)\right|_{2}^{2}\right]\right.
$$

An Exponential Martingale Estimate

- It is possible to construct an exponential martingale based on our Markov process and verify that (see Darling and Norris 2008):

Lemma: For $\epsilon>0$ sufficiently small, for all $N \in \mathbb{N}$, we have:

$$
\mathbb{P}\left[\left\{\sup _{0 \leq t \leq T}| | M^{N}(t)| |_{\infty} \geq \epsilon\right\}\right] \leq 4 \exp \left(-\frac{\epsilon^{2}}{2 A_{f} T}\right)
$$

where:

$$
A_{f}=\frac{e m\left(k_{1}\left(s_{0}+\frac{m}{N}\right)+\left(k_{2} \vee k_{3}\right)\right)}{N}
$$

$$
\begin{aligned}
& X_{1}^{N}(0)=N s_{0} \text { and } X_{2}^{N}(0)=N p_{0} \\
& \text { For all } t \geq 0, X_{3}^{N}(t)+X_{4}^{N}(t) \equiv m>0 \\
& \widehat{\boldsymbol{k}}_{2}=N \boldsymbol{k}_{2} \text { and } \widehat{k}_{3}=N k_{3}
\end{aligned}
$$

Rewriting our Problem

$$
\begin{array}{ll}
f\left(X^{N}(t)\right)=f\left(X^{N}(0)\right)+M^{N}(t) & +\int_{0}^{t} \gamma_{f}\left(X^{N}(\tau)\right) d \tau \longrightarrow \text { Stochastic Process } \\
(s(t), p(t))=\left(s_{0}, p_{0}\right) & +\int_{0}^{t} b(s(\tau), p(\tau)) d \tau \longrightarrow \text { ODE }
\end{array}
$$

$$
b(s(\tau), p(\tau))=\left(-\frac{m k_{3} s(\tau)}{\frac{k_{2}+k_{3}}{k_{1}}+s(\tau)}, \frac{m k_{3} s(\tau)}{\frac{k_{2}+k_{3}}{k_{1}}+s(\tau)}\right) \quad \gamma_{f}\left(X^{N}(\tau)\right)=\left(-k_{1} \frac{X_{1}^{N}(\tau)}{N} X_{3}^{N}(\tau)+k_{2} X_{4}^{N}(\tau), k_{3} X_{4}^{N}(\tau)\right)
$$

The Problem of the Fast Variables

- Given a state $\left(\zeta_{1}, \zeta_{2}, \xi_{3}, \xi_{4}\right)=\left(\frac{\xi_{1}}{N}, \frac{\xi_{2}}{N}, \xi_{3}, \xi_{4}\right) \in\left(\mathbb{R}_{+}\right)^{4}$:

$$
\begin{aligned}
\left(\zeta_{1}, \zeta_{2}, \xi_{3}, \xi_{4}\right) & \rightarrow\left(\zeta_{1}-\frac{1}{N}, \zeta_{2}, \xi_{3}-1, \xi_{4}+1\right) \text { with rate } N k_{1} \zeta_{1} \xi_{3} \\
\left(\zeta_{1}, \zeta_{2}, \xi_{3}, \xi_{4}\right) & \rightarrow\left(\zeta_{1}+\frac{1}{N}, \zeta_{2}, \xi_{3}+1, \xi_{4}-1\right) \text { with rate } \mathrm{N} k_{2} \xi_{4} \\
\left(\zeta_{1}, \zeta_{2}, \xi_{3}, \xi_{4}\right) & \rightarrow\left(\zeta_{1}, \zeta_{2}+\frac{1}{N}, \xi_{3}+1, \xi_{4}-1\right) \text { with rate } \mathrm{N} k_{3} \xi_{4}
\end{aligned}
$$

The number of molecules of enzyme and complex oscillates too fast when $N \rightarrow \infty$

No convergence can occur

We still can make some nice estimates about the integral of the path

Dealing with the Fast variables

- We now consider the process $\left(g\left(X^{N}(t)\right)\right)_{t \geq 0}$, given by $g\left(X^{N}(t)\right)=\left(\frac{X_{3}^{N}(t)}{N}, \frac{X_{4}^{N}(t)}{N}\right)$
- The drift vector is now $\gamma_{g}\left(X^{N}(t)\right)=\left(-k_{1} \frac{X_{1}^{N}(t)}{N} X_{3}^{N}(t)+X_{4}^{N}(t)\left(k_{2}+k_{3}\right), k_{1} \frac{X_{1}^{N}(t)}{N} X_{3}^{N}(t)-X_{4}^{N}(t)\left(k_{2}+k_{3}\right)\right)$
- We can again write a martingale $\left(L^{N}(t)\right)_{t \geq 0}$ associated to g :

$$
\begin{array}{ll}
g\left(X^{N}(t)\right)=g\left(X^{N}(0)\right)+L^{N}(t)+\int_{0}^{t} \gamma_{g}\left(X^{N}(\tau)\right) d \tau & A_{g}=\frac{e m\left(k_{1}\left(s_{0}+\frac{m}{N}\right)+\left(k_{2}+k_{3}\right)\right)}{N} .
\end{array}
$$

$$
\mathbb{P}\left[\left\{\sup _{0 \leq t \leq T}| | L^{N}(t)| |_{\infty} \geq \epsilon\right\}\right] \leq 4 \exp \left(-\frac{\epsilon^{2}}{2 A_{g} T}\right)
$$

Finishing this (Finally)

$$
\begin{array}{ll}
f\left(X^{N}(t)\right)=f\left(X^{N}(0)\right)+M^{N}(t)+\int_{0}^{t} \gamma_{f}\left(X^{N}(\tau)\right) d \tau \longrightarrow \text { Stochastic Process } \\
(s(t), p(t))=\left(s_{0}, p_{0}\right) \quad+\int_{0}^{t} b(s(\tau), p(\tau)) d \tau \longrightarrow \text { ODE }
\end{array}
$$

$$
b(s(\tau), p(\tau))=\left(-\frac{m k_{3} s(\tau)}{\frac{k_{2}+k_{3}}{k_{1}}+s(\tau)}, \frac{m k_{3} s(\tau)}{\frac{k_{2}+k_{3}}{k_{1}}+s(\tau)}\right) \quad \gamma_{f}\left(X^{N}(\tau)\right)=\left(-k_{1} \frac{X_{1}^{N}(\tau)}{N} X_{3}^{N}(\tau)+k_{2} X_{4}^{N}(\tau), k_{3} X_{4}^{N}(\tau)\right)
$$

Aim: To apply Gronwall's lemma

$$
f(t) \leq C+D \int_{0}^{t} f(s) d s, \quad \forall 0 \leq t \leq T \Rightarrow f(T) \leq C e^{D T}
$$

Finishing this (Finally)

$$
\begin{aligned}
& \sup _{0 \leq \tau \leq t}| | f\left(X^{N}(\tau)\right)-\left.(s(\tau), p(\tau))\right|_{\infty} \leq\left.\left|\left|f\left(X^{N}(0)\right)-\left(s_{0}, p_{0}\right)\right|_{\infty}+\sup _{0 \leq \tau \leq t}\right|\left|M^{N}(\tau)\right|\right|_{\infty} \\
&+\frac{k_{1} k_{3} m}{k_{2}+k_{3}} \int_{0}^{t} \sup _{0 \leq r \leq \tau}| | f\left(X^{N}(r)\right)-(s(r), p(r))| |_{\infty} d \tau \\
&\left.+\sup _{0 \leq \tau \leq t}| | \int_{0}^{\tau} \frac{\left(k_{1} s(r)+k_{2}\right)}{\left(k_{1} s(r)+k_{2}+k_{3}\right)}\right) \\
& \gamma_{g}\left(X^{N}(r)\right) d r| |_{\infty}
\end{aligned}
$$

Second Mean Value Theorem for Integrals: Let $h, w:[0, T] \rightarrow \mathbb{R}$ such that h is monotonic and w is Lebesgue integrable. Then there exists $\mathrm{c} \in[0, T]$ such that

$$
\int_{0}^{T} h(t) w(t) d t=h(0+) \int_{0}^{T} w(t) d t+h(T-) \int_{0}^{T} w(t) d t
$$

The Final Theorem (Finally)

Theorem: For the initial conditions, $\quad X_{1}^{N}(0)=N s_{0}$ and $X_{2}^{N}(0)=N p_{0}$

$$
\begin{aligned}
& \text { For all } t \geq 0, X_{3}^{N}(t)+X_{4}^{N}(t) \equiv m>0 \\
& \widehat{\boldsymbol{k}}_{2}=N k_{2} \text { and } \widehat{k}_{3}=N k_{3}
\end{aligned}
$$

and taking $f\left(X^{N}(t)\right)=\left(\frac{X_{1}^{N}(t)}{N}, \frac{X_{2}^{N}(t)}{N}\right)$, we have, for all $T>0$, that:

$$
\mathbb{P}\left[\left\{\sup _{0 \leq t \leq T}| | f\left(X^{N}(t)\right)-\left.(s(t), p(t))\right|_{\infty}>C_{N, \epsilon} e^{D T}\right\}\right] \leq 4\left[\exp \left(-\frac{\epsilon^{2}}{2 A_{f} T}\right)+\exp \left(-\frac{\epsilon^{2}}{2 A_{g} T}\right)\right],
$$

Where

$$
\begin{array}{ll}
C_{N, \epsilon}=\epsilon+3 \frac{\left(k_{1} s_{0}+k_{2}\right)}{k_{2}+k_{3}}\left(\frac{m}{N}+\epsilon\right) & A_{f}=\frac{e m\left(k_{1}\left(s_{0}+\frac{m}{N}\right)+\left(k_{2} \vee k_{3}\right)\right)}{N} \quad \frac{d s}{d t}(t)=-\frac{k_{1} m s(t)}{\left(k_{2}+k_{3}\right)+s(t)} \\
D=\frac{k_{1} k_{3} m}{k_{2}+k_{3}} & A_{g}=\frac{e m\left(k_{1}\left(s_{0}+\frac{m}{N}\right)+\left(k_{2}+k_{3}\right)\right)}{N} \quad \frac{d p}{d t}(t)=\frac{k_{1} m s(t)}{\left(k_{2}+k_{3}\right)+s(t)}
\end{array}
$$

Conclusion

Conclusion and Future Work

- Markov chains may converge to continuous dynamical systems under some appropriate scaling
- There are many different techniques to do so
- This is possible even when the system presents multiple time scales

Thank you for your attention!!
Coses

