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The Biology of Enzymatic Reactions




The Biology of Enzymatic Reactions

* Enzymes are proteins that accelerate the conversion of other molecules, but they

themselves are not changed by the reaction = basic biological catalysts

C==0 ¢

Enzyme Enzyme Product

* Enzymatic reactions are ubiquitous in biological systems

* Basic model in biochemical networks
(Keener 2009)



The Michaelis-Menten Kinetics

) Reaction: S - P 1 Michaelis-Menten Kinectics
e Law of Mass Action: 09 F
0.8
V = k|S] .

 The kinetics of enzymatic reactions does

not follow the law of mass action

Velocity (mmol/L/min)
o
(&)

e The Michaelis-Menten Kinetics:

N Enzymatic Reac'Fion
V([S]) — VmaX . [S] 01 Law of Mass Action
ol T e ST I

Substrate(mmol/L)

(Michaelis and Menten 1913, Keener 2009)



Constructing the Model(s)
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| How to construct a model which explains and reproduces the observed behaviour?_!




Modelling
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Quasi-Steady State Deterministic Approximation
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* Substrate (s(t)), product (p(t)), enzyme (e(t)) and complex (c(t)) are C! functions from

|0,0) to R,
e(t) =e(0) —c(t)
=kis(t)e(t) — (ky + k3) ~ 0
dp _ dp _ k1e(0) _ Vimax
ar Wkl = = e S T Ky +
_ _ k1e(0)
= —k]_ e(t) + kz = — (k2-|—k3) n

(Briggs and Haldane 1925)



The QSSA Approach

Advantages Disadvantages

1. Good fit to the data (when a large number of 1. Itis difficult to make the argument rigorous
substrate molecules is considered) = kys(De(t) — (ky + ks) ~ 0
2. Simple, but a meaningful, explanation

e(t) =e(0) —c(t)

2. It does not fit the data well for low number of

+ = + .
k,
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Stochastic Interacting Particle System

k, R
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Enzyme Enzyme Product

* We model our system as a continuous-time Markov chain

* Let N € N be a scaling parameter

o (XN(t))es0 = ( X2 (1), XY (D), )¢=0 Which is a jump process in (Ng)*:
and X5 (0) = Np,
o Forallt >0, X% (1) + =m>0

O ’kz = Nk2 and Eg = Nk3
(Darden 1979)



Stochastic Interacting Particle System
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Enzyme

e Given astate (¢, &,,&3,7.) € (Ng)*:

( 162163' ) — ( ;62;63 — 1,
( JEZ)&BJ )_) ( JEZ)&B + 1;
($1,62,83,64) 2 (61,8 + 1L,E3 + 1,

Enzyme

) with rate k4
) with rate Nk,
) with rate N/,

k
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Product

(Darden 1979)



The Stochastic Interacting Particle System Approach

Advantages Disadvantages

1. Good fit to the data 1. Itis difficult to analyse
2. The description of the model is simple and
precise, and it does not require any

approximation

+ = + .
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Scaling Limits of the Stochastic Model

' I
| Are the models “compatible” to each other in some sense? |

I
I How to decide which one to use? JI
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The Scaling Limit
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Enzyme Enzyme Product

* Let N € N be a scaling parameter

o (XN(t))es0 = ( X2 (1), XY (D), )¢=0 Which is a jump process in (Ng)*:

and X} (0) = Npj X3' ()

and x)' (1) =

oForaIItZO,X%’(t)+ =m>0

O ’kz = Nk2 and Eg = Nk3

F&N(@®) = (V) = ( xz ()

(Darden 1979)



The Scaling Limit
ky .
-0 @ n

Enzyme Enzyme Product

* Givenastate (((,(,,&5,0.) = ( ,2—2,53, ) € (Ry)*:

((.,05,¢&5,0.) > ( ,(5,&63 — 1, )with rate k1 &5
(o néni) > ( 00 &a + 1, ) with rate Nk,

(1,02, ¢3, )—>( y (5 +%,€3+1, )withrateNk3



“Empirical” Evidence of Convergence

N=100 N=1000

— Gillespie ‘ — Gillespie
Stochastic SQSSA| | 900 - Stochastic SQSSA|

800 -

Substrate copy number
Substrate copy number

| How to define convergence? |

(Kang et al. 2019)



Weak Convergence of Probability Measures

Let (E, d) be a complete and separable metric space

Let (uy) yen be a sequence of Borel probability measures on E

 Consider a sequence of random variables (Xy)nen, €ach of them taking values on E, such that

the law of Xy is given by uy

Consider a random variable X, also taking values on E, with associated law u

Definition: We say (Xy)yen converges weakly to X if for any bounded and continuous function
f+E - R:
lim Ey,, [f (Xa)] = E,[f ()]

n—>00



Weak Convergence in the Space of Cadlag Functions

( O
(kpti) +
QSSA model [ @ kie(0) Markov Chain | (X"(®)ez0 = (¥} (1), X3 (), XY (), (1 ))eao
i T Ui+
| 5(0) = sp and p(0) = py

FixT >0

_ (X{V © x¥ (t))
0<t<T N ' N 0<t<T

* Foreach N € N, consider the random variable x) = (xN(t))

Our limiting “random” variable is the unique solution to the ODE x = (s(t), P(t))0<t<r

 We consider E as the space of cadlag functions from [0, T] to R?: D([0, T], R?)

* We say a function is cadlag if it is right-continuous with left limits



Weak Convergence in the Space of Cadlag Functions

* We can define a topology in D([0, T], R?) which is called the Skorokhod topology

* The usual strategy to prove convergence is:
1. To show that any subsequence of (uy)nyen has a weakly convergent subsequence

2. To prove that every subsequential limit has the same law (or is the same cadlag function)

* The study of this approach is beyond the scope of this talk

N N
* To prove that (f (X" (©)))osesr = (P2, 53

= (x(t))OStST = (s(®),p(®)) it is

)OStST 0<t<T

enough to prove that, for Ve > 0:

lim P { sup ||xN(t) — x(t)|| > e}] =0
N—o0 0<t<T *



Computing the “action” of the Generator on the

Slow Variables
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 Givena state( , 62,53, ) = ( ,%,53, ) (S (IR+)4, we compute the impact of the dynamics on f:

Transition Rate Difference
(GG i) > (0= 0 Gfa = 1,60+ 1) A2 (—.0)
Colobni) > (0 + GGt Li 1) N (+.0)
(,gg,)e(,g+%gymﬂ ) NV, (ﬁ%)

Drift Vector: ¥ (51, ¢2,83,04) = (ke &3+ ko, kesc))




The Martingale Problem
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xN() Xé%t))
N ' N Jo<t<T

* We can describe the dynamics of the process (f (X" (£))) g<t<r = ( by:

t
FXN@®) = F(XN0)) + MV () + f v (XN (r))dtr — > Stochastic Process
0

* The process (MN(t))t>0 indicates the fluctuations of the system, and it is a martingale



(Very) Brief Review of Martingales - |

» Consider a probability space (0, F, IP)

* A filtration (F;);so of F can be thought as a family of o-

algebras indexed by time suchthats <t = F, € F;

* For a more practical point of view, we can think about F; as
the o-algebra generated by the events that happened until

timet

* A Martingale (M(t))t>0 is a process such that:
v M(t) is Fe-measurable and E[|M(t)]] < oo, Vt = 0
VEM®@)|F]=M(s),VOo<s<t

* Intuition: the amount of money a player wins in a fair game,

Brownian motion



(Very) Brief Review of Martingales — Il

* There are really nice estimates regarding martingales

* A particular case of the optional stopping theorem says that:
E[M(t)] = E[M(0)],vt =0

* For example, Doob’s L2 Inequality shows that:

E| sup M@, | 5 E[lIMY @I



An Exponential Martingale Estimate

* It is possible to construct an exponential martingale based on our Markov process and verify that (see Darling and

Norris 2008):

Lemma: For € > 0 sufficiently small, for all N € N, we have:

EZ
P[{su MM (t ZE}]S4CX (— ),
Sup M1, P\ 24T

/so and XY (0) = Np,

em(kl( +%)+(k2Vk3)) Forallt = 0, X5 (¢) + =m>0
N ' k; = Nky and k3 = Nk;

k, ~
_— k
o = "
k>

Enzyme ibstrate Enzyme Product

where:




Rewriting our Problem

k, R
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Enzyme Product

t
fF(XN@®) = F(XN0)) + MN(@) + J ¥ (X" (x))dr — Stochastic Process
0

t
(s®),p®) = (s0,P0) + fo b(s(1),p(t))dt —> ODE

mk3 mkg

b(S(T), p(T)) = <_ kz + k3 N 'kz n k3 N ) )/f(XN(T)) — <_k1 Xév(r) + k2 ’ k3 )
K, K,




The Problem of the Fast Variables

Enzyme

* Givenastate (((,(5,&3,0.) = ( ,%,53, ) e (R

(01,02, 63,00) = ( (2,83 — 1, )With rate k(&5
(0 0oréa i) = (00,008 + 1,0, 1) with rate Nk,

(C1, G2, €3, )—>( )2 +%,€3+1, )withrateNk3

k
ol "M
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The number of molecules of enzyme

and complex oscillates too fast when
N — o

No convergence can occur

We still can make some nice
estimates about the integral of the
path




Dealing with the Fast variables

« We now consider the process (g(XN(t)))t>O, given by g(XN(t)) = (Xéjv(t), )

* The drift vector is now y, (XN (t)) = (—k1 XN + (ky + /5), kq X3(t) — (ko + k3))

* We can again write a martingale (LN(t))t>o associated to g:

t
g(XN D) = g(XV(0)) + LN () + fo v, (XM (0))dr

em (kl ( + rﬁn) + (ky + k3))

sup
0<t<T

t
fo ye(XN(1))dr

m
<5+ sup 1LV (O]
0<t<T

EZ kq %
P [l 1L, 2 o < 4o (1) G o -0 =
OStETl (®) |°° P 244T %,




Finishing this (Finally)

k, R
> k
k,

Enzyme Enzyme Product
t
FXN@®) =F(XN0)) + MN(@®) + JF v (XN (t))dtr — > Stochastic Process
0
t
(S(t);P(t)) = (S0, Po) + Jr b(s(t),p(r))dt —> ODE
0
mic, ml,
b(s(®),p(r)) = (‘ kot s kgt ) ve(XN(D) = <_k1 X3 (1) + k ke )
k1 k1

t
Aim: To apply Gronwall’s lemma f(t) < C+ D/o f(s)ds, YO<t<T=f(T)<Ce""



Finishing this (Finally)

sup
0<t<t

FXN@) = @, p@)|| < [IFEN©O) = Gop0)l| + sup [IMY@I],

0<t<t

kiksm (*t
+13 sup

kz + k3 0 O=srst

(kis(r) + ky) ] y
LI(MS(?‘) +ky, + k) Yg(XN(r))dr

\

Second Mean Value Theorem for Integrals: Let h, w: [0, T] — R such that h is monotonic and w is Lebesgue integrable. Then
there exists c € [0, T] such that

T T T
J h(t)w(t)dt = h(0 +)J w(t)dt + h(T—)J w(t)dt
0 0 0

FN @) = (s p@)|| dr

+ sup

Ost<t

Monotonic function



The Final Theorem (Finally)

Theorem: For the initial conditions, v/ (o yand XY (0) = Np,
Forall t > 0, X% (t) + =m>0

’,EZ [ Nkz and /kg = Nk3

N N
and taking f (XM (t)) = (X1 (t),XZN(t)), we have, for all T > 0, that:

N
€2 €2
v [{o‘?ﬂ% @) = (@p@)I], > e | < 4 [exp (_ 2AfT> e <_ 2AgT>] '
Where
m klm
_ (k1$0 + kz) m em (kl ( + N) + (kz V k3)) —
Cye=€+3 K, T ks (N+e) Ap = ; (ky+k3) +
kiksm em (k + ) + (ky + )) APy o fam
= 1 2 3 —(t) =

g N



Conclusion




Conclusion and Future Work

* Markov chains may converge to continuous dynamical systems under some appropriate scaling
* There are many different techniques to do so

e This is possible even when the system presents multiple time scales




Thank you for your attention!!




