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Topics



Aims

• To introduce the idea of “convergence” of

stochastic interacting particle systems to

ODEs

• Apply this concept to a model with

multiple time scales which is crucial to

mathematical biology

• Rigorous math is FUN…

• AND useful!



The Biology of Enzymatic Reactions



The Biology of Enzymatic Reactions

• Enzymes are proteins that accelerate the conversion of other molecules, but they

themselves are not changed by the reaction à basic biological catalysts

• Enzymatic reactions are ubiquitous in biological systems

• Basic model in biochemical networks

+ +

Enzyme Substrate Complex Enzyme Product

(Keener 2009)



The Michaelis-Menten Kinetics

• Reaction: 𝑆 → 𝑃

• Law of Mass Action:

• The kinetics of enzymatic reactions does

not follow the law of mass action

• The Michaelis-Menten Kinetics:

(Michaelis and Menten 1913, Keener 2009)
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𝑉 𝑆 =
𝑉!"# ⋅ [𝑆]
𝐾$ + 𝑆

𝑉 = 𝑘 𝑆



Constructing the Model(s)

How to construct a model which explains and reproduces the observed behaviour?



Modelling

Quasi-Steady State 
Deterministic 

Approximation
(QSSA)

Stochastic 
Interacting Particle 

System



Quasi-Steady State Deterministic Approximation

• Substrate (𝑠 𝑡 ), product (𝑝 𝑡 ), enzyme (𝑒 𝑡 ) and complex (𝑐 𝑡 ) are 𝒞% functions from

[0,∞) to ℝ&

+ +

Enzyme Substrate Complex Enzyme Product

(Briggs and Haldane 1925)

𝑘!

𝑘"

𝑘#

𝒅𝒄
𝒅𝒕

𝒕 = 𝑘!𝒔 𝒕 𝒆 𝒕 − 𝑘" + 𝑘# 𝒄 𝒕 ≈ 0

𝑒(𝑡) = 𝑒(0) − 𝑐 𝑡

𝒅𝒑
𝒅𝒕

𝒕 = 𝑘#𝒄 𝒕 ⇒
𝒅𝒑
𝒅𝒕

𝒕 =
𝑘!𝒆 𝟎 𝒔 𝒕

(𝑘"+𝑘#) + 𝒔 𝒕
≡
𝑉$%&𝒔(𝒕)
𝐾' + 𝒔 𝒕

𝒅𝒔
𝒅𝒕

𝒕 = −𝑘!𝒔 𝒕 𝒆 𝒕 + 𝑘"𝒄 𝒕 = −
𝑘!𝒆 𝟎 𝒔 𝒕

(𝑘"+𝑘#) + 𝒔 𝒕



The QSSA Approach

Advantages

1. Good fit to the data (when a large number of

substrate molecules is considered)

2. Simple, but a meaningful, explanation

1. It is difficult to make the argument rigorous

2. It does not fit the data well for low number of

molecules

Disadvantages

𝒅𝒄
𝒅𝒕

𝒕 = 𝑘!𝒔 𝒕 𝒆 𝒕 − 𝑘" + 𝑘# 𝒄 𝒕 ≈ 0

𝑒(𝑡) = 𝑒(0) − 𝑐 𝑡



Stochastic Interacting Particle System

• We model our system as a continuous-time Markov chain

• Let 𝑁 ∈ ℕ be a scaling parameter

• (𝑋' 𝑡 )()* = (𝑿𝟏𝑵 𝒕 , 𝑿𝟐𝑵 𝒕 , 𝑿𝟑𝑵 𝒕 , 𝑿𝟒𝑵(𝒕))()* which is a jump process in (ℕ*)0:

o 𝑿𝟏𝑵 𝟎 = 𝑵𝒔𝟎 and 𝑿𝟐𝑵 𝟎 = 𝑵𝒑𝟎

o For all 𝑡 ≥ 0, 𝑿𝟑𝑵 𝒕 + 𝑿𝟒𝑵 𝒕 ≡ 𝑚 > 0

o ;𝒌𝟐 = 𝑵𝒌𝟐 and ;𝒌𝟑 = 𝑵𝒌𝟑

+ +

Enzyme Substrate Complex Enzyme Product

𝑘!

;𝒌𝟐

;𝒌𝟑

(Darden 1979)



Stochastic Interacting Particle System

• Given a state 𝜉%, 𝜉1, 𝜉2, 𝜉0 ∈ (ℕ*)0:

+ +

Enzyme Substrate Complex Enzyme Product

𝑘!

;𝒌𝟐

;𝒌𝟑

𝜉%, 𝜉1, 𝜉2, 𝜉0 → 𝜉% − 1, 𝜉1, 𝜉2 − 1, 𝜉0 + 1 with rate 𝑘%𝜉%𝜉2
𝜉%, 𝜉1, 𝜉2, 𝜉0 → 𝜉% + 1, 𝜉1, 𝜉2 + 1, 𝜉0 − 1 with rate N𝑘1𝜉0
𝜉%, 𝜉1, 𝜉2, 𝜉0 → 𝜉%, 𝜉1 + 1, 𝜉2 + 1, 𝜉0 − 1 with rate N𝑘2𝜉0

(Darden 1979)



The Stochastic Interacting Particle System Approach

Advantages

1. Good fit to the data

2. The description of the model is simple and

precise, and it does not require any

approximation

1. It is difficult to analyse

Disadvantages



Scaling Limits of the Stochastic Model

Are the models “compatible” to each other in some sense?

How to decide which one to use?



The Scaling Limit

• Let 𝑁 ∈ ℕ be a scaling parameter

• (𝑋' 𝑡 )()* = (𝑿𝟏𝑵 𝒕 , 𝑿𝟐𝑵 𝒕 , 𝑿𝟑𝑵 𝒕 , 𝑿𝟒𝑵(𝒕))()* which is a jump process in (ℕ*)0:

o 𝑿𝟏𝑵 𝟎 = 𝑵𝒔𝟎 and 𝑿𝟐𝑵 𝟎 = 𝑵𝒑𝟎

o For all 𝑡 ≥ 0, 𝑿𝟑𝑵 𝒕 + 𝑿𝟒𝑵 𝒕 ≡ 𝑚 > 0

o ;𝒌𝟐 = 𝑵𝒌𝟐 and ;𝒌𝟑 = 𝑵𝒌𝟑

+ +

Enzyme Substrate Complex Enzyme Product

𝑘!

;𝒌𝟐

;𝒌𝟑

(Darden 1979)

𝑥=> 𝑡 ≡ ?!"(@)
>

and 𝑥A> 𝑡 ≡ ?#"(@)
>

𝑓 𝑋>(𝑡) ≡ 𝑥> 𝑡 = (𝑥=> 𝑡 , 𝑥A> 𝑡 )



The Scaling Limit

• Given a state 𝜁=, 𝜁A, 𝜉B, 𝜉C = D!
>
, D#
>
, 𝜉B, 𝜉C ∈ (ℝE)C:

+ +

Enzyme Substrate Complex Enzyme Product

𝑘!

;𝒌𝟐

;𝒌𝟑

𝜁%, 𝜁1, 𝜉2, 𝜉0 → 𝜁% −
%
' , 𝜁1, 𝜉2 − 1, 𝜉0 + 1 with rate N𝑘%𝜁%𝜉2

𝜁%, 𝜁1, 𝜉2, 𝜉0 → 𝜁% +
%
' , 𝜁1, 𝜉2 + 1, 𝜉0 − 1 with rate N𝑘1𝜉0

𝜁%, 𝜁1, 𝜉2, 𝜉0 → 𝜁%, 𝜁1 +
%
'
, 𝜉2 + 1, 𝜉0 − 1 with rate N𝑘2𝜉0



“Empirical” Evidence of Convergence

(Kang et al. 2019)

How to define convergence?



Weak Convergence of Probability Measures

• Let (𝐸, 𝑑) be a complete and separable metric space

• Let 𝜇' '∈ℕ be a sequence of Borel probability measures on 𝐸

• Consider a sequence of random variables 𝑋' '∈ℕ, each of them taking values on 𝐸, such that

the law of 𝑋' is given by 𝜇'

• Consider a random variable 𝑋, also taking values on 𝐸, with associated law 𝜇

• Definition: We say 𝑋' '∈ℕ converges weakly to 𝑋 if for any bounded and continuous function

𝑓: 𝐸 → ℝ:

lim
5→7

𝔼8! 𝑓(𝑋') = 𝔼8[𝑓(𝑋)]



Weak Convergence in the Space of Càdlàg Functions

• Fix 𝑇 > 0

• For each N ∈ ℕ, consider the random variable 𝑥' = 𝑥' 𝑡 *9(9: =
;"! (
'

, ;#
! (
' *9(9:

• Our limiting “random” variable is the unique solution to the ODE 𝑥 = 𝑠 𝑡 , 𝑝 𝑡 *9(9:

• We consider 𝐸 as the space of càdlàg functions from 0, T to ℝ1: 𝒟 0, 𝑇 , ℝ1

• We say a function is càdlàg if it is right-continuous with left limits

QSSA model

𝑑𝑠
𝑑𝑡 𝑡 = −

𝑘!𝒆 𝟎 𝒔 𝒕
(𝑘"+𝑘#) + 𝒔 𝒕

𝑑𝑝
𝑑𝑡

𝑡 =
𝑘!𝒆 𝟎 𝒔 𝒕

(𝑘" + 𝑘#) + 𝒔 𝒕
𝑠 0 = 𝑠$ and 𝑝 0 = 𝑝$

(𝑋% 𝑡 )&'$ = (𝑿𝟏𝑵 𝒕 , 𝑿𝟐𝑵 𝒕 , 𝑿𝟑𝑵 𝒕 , 𝑿𝟒𝑵(𝒕))&'$Markov Chain



Weak Convergence in the Space of Càdlàg Functions

• We can define a topology in 𝒟 0, 𝑇 ,ℝ1 which is called the Skorokhod topology

• The usual strategy to prove convergence is:

1. To show that any subsequence of 𝜇. .∈ℕ has a weakly convergent subsequence

2. To prove that every subsequential limit has the same law (or is the same càdlàg function)

• The study of this approach is beyond the scope of this talk

• To prove that 𝑓(𝑋' 𝑡 ) *9(9: =
;"! (
' , ;#

! (
' *9(9:

⇒ 𝑥 𝑡 *9(9: = 𝑠 𝑡 , 𝑝 𝑡
*9(9:

, it is

enough to prove that, for ∀𝜖 > 0:

lim
'→7

ℙ sup
*9(9:

𝑥' 𝑡 − 𝑥 𝑡 7 > 𝜖 = 0



Computing the “action” of the Generator on the 
Slow Variables

+ +

Enzyme Substrate Complex Enzyme Product

𝑘!

;𝒌𝟐

;𝒌𝟑

• Given a state 𝜁%, 𝜁1, 𝜉2, 𝜉0 = Q"
'
, Q#
'
, 𝜉2, 𝜉0 ∈ (ℝ&)0, we compute the impact of the dynamics on 𝑓:

Transition Rate Difference

𝜁!, 𝜁", 𝜉#, 𝜉- → 𝜁! −
1
𝑁
, 𝜁", 𝜉# − 1, 𝜉- + 1 N𝑘!𝜁!𝜉# −

1
𝑁
, 0

𝜁!, 𝜁", 𝜉#, 𝜉- → 𝜁! +
1
𝑁
, 𝜁", 𝜉# + 1, 𝜉- − 1 N𝑘"𝜉- +

1
𝑁
, 0

𝜁!, 𝜁", 𝜉#, 𝜉- → 𝜁!, 𝜁" +
1
𝑁
, 𝜉# + 1, 𝜉- − 1 N𝑘#𝜉- 0, +

1
𝑁

Drift Vector: 𝛾1 𝜉!, 𝜉", 𝜉#, 𝜉2 = −𝑘!𝜁!𝜉# + 𝑘"𝜉2, 𝑘#𝜉2



The Martingale Problem

+ +

Enzyme Substrate Complex Enzyme Product

𝑘!

;𝒌𝟐

;𝒌𝟑

• We can describe the dynamics of the process 𝑓(𝑋. 𝑡 ) 34546 =
7!" 5
.

, 7#
" 5
. 34546

by:

• The process 𝑀. 𝑡 583 indicates the fluctuations of the system, and it is a martingale

𝑓 𝑋. 𝑡 = 𝑓 𝑋. 0 + 𝑀.(𝑡) + N
3

5
𝛾1 𝑋. 𝜏 𝑑𝜏 Stochastic Process



(Very) Brief Review of Martingales - I
• Consider a probability space (Ω, ℱ, ℙ)

• A filtration ℱ5 583 of ℱ can be thought as a family of 𝜎-

algebras indexed by time such that s ≤ 𝑡 ⇒ ℱ9 ⊆ ℱ5

• For a more practical point of view, we can think about ℱ5 as

the 𝜎-algebra generated by the events that happened until

time 𝑡

• A Martingale 𝑀 𝑡 583 is a process such that:

ü𝑀 𝑡 is ℱ5-measurable and 𝔼 𝑀 𝑡 < ∞, ∀𝑡 ≥ 0

ü𝔼 𝑀 𝑡 |ℱ9 = 𝑀 𝑠 , ∀0 ≤ 𝑠 ≤ 𝑡

• Intuition: the amount of money a player wins in a fair game,

Brownian motion



(Very) Brief Review of Martingales – II 
• There are really nice estimates regarding martingales

• A particular case of the optional stopping theorem says that:

• For example, Doob’s L2 Inequality shows that:

𝔼 sup
34546

𝑀. 𝑡 " ≲ 𝔼 𝑀. 𝑡 "
"

𝔼 𝑀(𝑡) = 𝔼 𝑀 0 , ∀𝑡 ≥ 0



An Exponential Martingale Estimate
• It is possible to construct an exponential martingale based on our Markov process and verify that (see Darling and

Norris 2008):

Lemma: For 𝜖 > 0 sufficiently small, for all 𝑁 ∈ ℕ, we have:

where:

ℙ sup
34546

𝑀. 𝑡 : ≥ 𝜖 ≤ 4 exp −
𝜖"

2𝐴1𝑇
,

𝐴1 =
𝑒𝑚 𝑘! 𝑠3 +

𝑚
𝑁 + 𝑘" ∨ 𝑘#
𝑁 .



Rewriting our Problem

+ +

Enzyme Substrate Complex Enzyme Product

𝑘!

;𝒌𝟐

;𝒌𝟑

𝑓 𝑋. 𝑡 = 𝑓 𝑋. 0 + 𝑀.(𝑡) + N
3

5
𝛾1 𝑋. 𝜏 𝑑𝜏 Stochastic Process

𝑠 𝑡 , 𝑝 𝑡 = 𝑠3, 𝑝3 + N
3

5
𝑏 𝑠 𝜏 , 𝑝(𝜏) 𝑑𝜏 ODE

𝑏 𝑠 𝜏 , 𝑝(𝜏) = −
𝑚𝑘#𝑠(𝜏)

𝑘" + 𝑘#
𝑘!

+ 𝑠 𝜏
,

𝑚𝑘#𝑠(𝜏)
𝑘" + 𝑘#
𝑘!

+ 𝑠 𝜏
𝛾1 𝑋. 𝜏 = −𝑘!

𝑋!. 𝜏
𝑁 𝑋#. 𝜏 + 𝑘"𝑋2. 𝜏 , 𝑘#𝑋2. 𝜏



The Problem of the Fast Variables

• Given a state 𝜁!, 𝜁", 𝜉#, 𝜉2 = ;!
.
, ;#
.
, 𝜉#, 𝜉2 ∈ (ℝ<)2:

+ +

Enzyme Substrate Complex Enzyme Product

𝑘!

;𝒌𝟐

;𝒌𝟑

𝜁!, 𝜁", 𝜉#, 𝜉2 → 𝜁! −
!
.
, 𝜁", 𝜉# − 1, 𝜉2 + 1 with rate N𝑘!𝜁!𝜉#

𝜁!, 𝜁", 𝜉#, 𝜉2 → 𝜁! +
!
.
, 𝜁", 𝜉# + 1, 𝜉2 − 1 with rate N𝑘"𝜉2

𝜁!, 𝜁", 𝜉#, 𝜉2 → 𝜁!, 𝜁" +
!
.
, 𝜉# + 1, 𝜉2 − 1 with rate N𝑘#𝜉2

The number of molecules of enzyme 
and complex oscillates too fast when 
𝑁 → ∞

No convergence can occur

We still can make some nice
estimates about the integral of the
path



Dealing with the Fast variables

• We now consider the process 𝑔 𝑋. 𝑡
583

, given by 𝑔 𝑋. 𝑡 = 7$"(5)
.

, 7%
"(5)
.

• The drift vector is now 𝛾? 𝑋. 𝑡 = −𝑘!
7!" 5
.

𝑋#. 𝑡 + 𝑋2. 𝑡 𝑘" + 𝑘# , 𝑘!
7!" 5
.

𝑋#. 𝑡 − 𝑋2. 𝑡 𝑘" + 𝑘#

• We can again write a martingale 𝐿. 𝑡 583 associated to 𝑔:

𝑔 𝑋. 𝑡 = 𝑔 𝑋. 0 + 𝐿.(𝑡) + N
3

5
𝛾? 𝑋. 𝜏 𝑑𝜏

sup
34546

N
3

5
𝛾? 𝑋. 𝜏 𝑑𝜏

:

≤
𝑚
𝑁
+ sup
34546

𝐿. 𝑡

ℙ sup
34546

𝐿. 𝑡 : ≥ 𝜖 ≤ 4 exp −
𝜖"

2𝐴?𝑇

𝐴? =
𝑒𝑚 𝑘! 𝑠3 +

𝑚
𝑁 + 𝑘" + 𝑘#
𝑁 .



Finishing this (Finally)

+ +

Enzyme Substrate Complex Enzyme Product

𝑘!

;𝒌𝟐

;𝒌𝟑

𝑓 𝑋. 𝑡 = 𝑓 𝑋. 0 + 𝑀.(𝑡) + N
3

5
𝛾1 𝑋. 𝜏 𝑑𝜏 Stochastic Process

𝑠 𝑡 , 𝑝 𝑡 = 𝑠3, 𝑝3 + N
3

5
𝑏 𝑠 𝜏 , 𝑝(𝜏) 𝑑𝜏 ODE

𝑏 𝑠 𝜏 , 𝑝(𝜏) = −
𝑚𝑘#𝑠(𝜏)

𝑘" + 𝑘#
𝑘!

+ 𝑠 𝜏
,

𝑚𝑘#𝑠(𝜏)
𝑘" + 𝑘#
𝑘!

+ 𝑠 𝜏
𝛾1 𝑋. 𝜏 = −𝑘!

𝑋!. 𝜏
𝑁 𝑋#. 𝜏 + 𝑘"𝑋2. 𝜏 , 𝑘#𝑋2. 𝜏

Aim: To apply Gronwall’s lemma



Finishing this (Finally)

sup
34@45

𝑓 𝑋. 𝜏 − 𝑠 𝜏 , 𝑝 𝜏
:
≤ 𝑓 𝑋. 0 − 𝑠3, 𝑝3 :

+ sup
34@45

𝑀. 𝜏 :

+
𝑘!𝑘#𝑚
𝑘" + 𝑘#

Z
$

&
sup
$./.0

𝑓(𝑋% 𝑟 ) − 𝑠 𝑟 , 𝑝 𝑟
1
𝑑𝜏

+ sup
$.0.&

Z
$

0 (𝑘!𝑠 𝑟 + 𝑘")
𝑘!𝑠 𝑟 + 𝑘" + 𝑘#

𝛾2 𝑋% 𝑟 𝑑𝑟
1

Monotonic function

Second Mean Value Theorem for Integrals: Let ℎ, 𝑤: 0, 𝑇 → ℝ such that ℎ is monotonic and 𝑤 is Lebesgue integrable. Then 
there exists c ∈ [0, 𝑇] such that

Z
$

3
ℎ 𝑡 𝑤 𝑡 𝑑𝑡 = ℎ 0 + Z

$

3
𝑤 𝑡 𝑑𝑡 + ℎ(𝑇−)Z

$

3
𝑤 𝑡 𝑑𝑡



The Final Theorem (Finally)
Theorem: For the initial conditions,

and taking 𝑓 𝑋% 𝑡 = 4!"(&)
%

, 4#
"(&)
%

, we have, for all 𝑇 > 0, that:

Where 

ℙ sup
$.&.3

𝑓 𝑋% 𝑡 − 𝑠 𝑡 , 𝑝 𝑡
1
> 𝐶%,8𝑒93 ≤ 4 exp −

𝜖"

2𝐴:𝑇
+ exp −

𝜖"

2𝐴2𝑇
,

𝐴1 =
𝑒𝑚 𝑘! 𝑠3 +

𝑚
𝑁 + 𝑘" ∨ 𝑘#
𝑁

𝐴? =
𝑒𝑚 𝑘! 𝑠3 +

𝑚
𝑁 + 𝑘" + 𝑘#
𝑁

𝐶.,B = 𝜖 + 3
(𝑘!𝑠3 + 𝑘")
𝑘" + 𝑘#

𝑚
𝑁
+ 𝜖

𝐷 =
𝑘!𝑘#𝑚
𝑘" + 𝑘#

𝒅𝒑
𝒅𝒕

𝒕 =
𝑘!𝒎𝒔 𝒕

(𝑘"+𝑘#) + 𝒔 𝒕

𝒅𝒔
𝒅𝒕 𝒕 = −

𝑘!𝒎𝒔 𝒕
(𝑘"+𝑘#) + 𝒔 𝒕



Conclusion



Conclusion and Future Work

• Markov chains may converge to continuous dynamical systems under some appropriate scaling

• There are many different techniques to do so

• This is possible even when the system presents multiple time scales



Thank you for your attention!!


